PHP神经网络

人工神经网络(ANN)是用于人工智能的算法来模拟人类的思维。该网络的工作方式类似于人的大脑,它是由神经元彼此沟通,并提供有价值的产出。虽然只是一个模型 – 甚至还没有接近人类的思维 – 人工神经网络已经被用于预测,分类和决策支持系统,以及光学字符识别和许多其他应用程序中。

人工神经网络的发展主要集中在高层次的编程语言,如C或C + +,但你也可以在PHP 中实现神经网络,这也许是在Web应用程序中使用人工智能最方便的方式。在这篇文章中,我将解释如何建立一个最常见的神经网络拓扑结构,多层次的感知,并通过使用一个PHP神经网络类在PHP中创建第一个神经网络。

类似人类思维过程,神经网络:

接收一些(数据)输入分析,并处理它

提供输出值(即,计算的结果)

这就是为什么在这个例子中拓扑结构有三层(多层感知):

l 输入层

l 隐藏层

l 输出层

根据您的需要,每一层都有一个特定的神经元数量。每一个神经元将被连接到下一层中所有神经元。神经元通过调整输出(即它们之间的权重系数)处理给定的任务。当然,它们可以应用到实际使用的情况下之前,神经网络往往需要去学习任务。但是,之前的一切,你要准备好你的数据网络。

在PHP中输入神经网络 – 准备数据

由于神经网络是复杂的数学模型,你可以不发送任何数据类型到输入神经元。之前的网络必须将数据标准化才可以使用它。这意味着,数据应被缩放到-1到1的范围内。不幸的是,在PHP中没有正常化函数,所以你必须自己做,但是可以我给你的公式:

I = Imin + (Imax-Imin)*(D-Dmin)/(Dmax-Dmin)

Imin 和 Imax代表的是神经网络的范围内(-1至1),Dmin和Dmax是数据的最小值和最大值。

正常处理数据后,你必须选择输入神经元的数量。例如,如果你有RGB颜色,你要确定红色或蓝色是主色,你将有4个输入神经元(红,绿,蓝值是神经元,第四个是偏见 – 通常等于1 )。下面是这样计算的PHP代码:

<?php

require_once("class_neuralnetwork.php");

$n = newNeuralNetwork(4, 4, 1);  // the number of neurons in each layer of the network -- 4 input, 4 hidden and 1 output neurons

$n->setVerbose(false); // do not display error messages

//test data

// First array is input data, and the second is the expected output value (1 means blue and 0 means red)

$n->addTestData( array (0, 0, 255, 1), array (1));

$n->addTestData( array (0, 0, 192, 1), array (1));

$n->addTestData( array (208, 0, 49, 1), array (0));

$n->addTestData( array ( 228,  105, 116, 1), array (0));

$n->addTestData( array (128, 80, 255, 1), array (1));

$n->addTestData( array ( 248,  80, 68, 1), array (0));

?>

只有一个输出神经元,因为你只有两种可能性结果。对于更复杂的问题,你可以使用一个以上的神经元网络输出,因此有许多的0和1作为可能的输出组合。

在PHP中训练神经网络

在能够解决问题之前,人工神经网络需要学习如何解决它,想像这个网络为一个公式。您已添加测试数据和预期的输出,并且该网络具有通过寻找输入和输出之间的连接来求解方程。这个过程被称为训练。在神经网络中,这些连接是神经元的权重。这几个算法可用于网络的训练,但反向传播算法是最常用的。BP算法实际上是指向后传播的错误。

初始化随机网络中的权重后,接下来的步骤是:

通过测试数据循环

1.计算实际输出

2.计算误差(所需的输出 – 当前网络输出)

3.向后计算增量的权重

4.更新权重

该过程继续进行,直到所有的测试数据已被正确地分类或算法已经达到停止标准。一般程序员试图使用最多三次的网络,而训练弹(时期)的最大数目为1000。另外,每个学习算法需要的激活功能。反向传播算法,激活函数是双曲正切(双曲正切)

让我们来看看如何在PHP中训练一个神经网络:

<?php

$max = 3;

// train the network in max 1000 epochs, with a max squared error of 0.01

while (!($success=$n->train(1000, 0.01)) && $max-->0) {

// training failed -- re-initialize the network weights

$n->initWeights();

}

//training successful

if ($success) {

$epochs = $n->getEpoch(); // get the number of epochs needed for training

}

?>

平均平方误差(mse)的错误,也被称为标准偏差的平方的平均值。默认的平均平方误差值通常为0.01,如果小于0.01,这意味着平均平方误差训练成功。

在来看下在PHP中工作的人工神经网络例子,这其实是一种很好的做法,可以节省您的神经网络文件或SQL数据库。如果你不保存它,你将不得不每次培训人来执行你的应用。简单的任务是很容易学的,但训练是一个更复杂的问题,需要更长的时间,你希望你的用户尽量少等待, 幸运的是,在这个PHP类例子中有保存和加载功能:

<?php

$n->save('my_network.ini');

?>

请注意,文件扩展名必须是 .ini.

关于我们神经网络的PHP代码

让我们来看看在正在运行的应用程序中接收红,绿,蓝的值,并计算是否是蓝色或红色占主导地位的的PHP代码:

<?php

require_once("class_neuralnetwork.php");

$r = $_POST['red'];

$g = $_POST['green'];

$b = $_POST['blue'];

$n = new NeuralNetwork(4, 4, 1); //initialize the neural network

$n->setVerbose(false);

$n->load('my_network.ini'); // load the saved weights into the initialized neural network. This way you won't need to train the network each time the application has been executed

$input= array(normalize($r),normalize($g),normalize($b));  //note that you will have to write a normalize function, depending on your needs

$result = $n->calculate($input);

If($result>0.5) {

// the dominant color is blue

}

else {

// the dominant color is red

}

?>

神经网络的限制

神经网络的主要限制是,它们只能解决线性可分的问题,很多问题不是线性可分。因此,非线性可分问题需要另一种人工智能算法。然而,神经网络可以解决很多的问题,需要计算机智能赚取的人工智能算法中占有重要地位。

附class_neuralnetwork.php :

<?php
/**
  * <b>Multi-layer Neural Network in PHP</b>
  *
  * Loosely based on source code by {@link http://www.philbrierley.com Phil Brierley},
  * that was translated into PHP by ‘dspink’ in sep 2005
  *
  * Algorithm was obtained from the excellent introductory book
  * “{@link http://www.amazon.com/link/dp/0321204662 Artificial Intelligence – a guide to intelligent systems}”
  * by Michael Negnevitsky (ISBN 0-201-71159-1)
  *
  * <b>Example: learning the ‘XOR’-function</b>
  * <code>
  * require_once(“class_neuralnetwork.php”);
  *
  * // Create a new neural network with 3 input neurons,
  * // 4 hidden neurons, and 1 output neuron
  * $n = new NeuralNetwork(3, 4, 1);
  * $n->setVerbose(false);
  *
  * // Add test-data to the network. In this case,
  * // we want the network to learn the ‘XOR’-function.
  * // The third input-parameter is the ‘bias’.
  * $n->addTestData( array (-1, -1, 1), array (-1));
  * $n->addTestData( array (-1,  1, 1), array ( 1));
  * $n->addTestData( array ( 1, -1, 1), array ( 1));
  * $n->addTestData( array ( 1,  1, 1), array (-1));
  *
  * // we try training the network for at most $max times
  * $max = 3;
  *
  * // train the network in max 1000 epochs, with a max squared error of 0.01
  * while (!($success=$n->train(1000, 0.01)) && $max–>0) {
  *         // training failed:
  *         // 1. re-initialize the weights in the network
  *         $n->initWeights();
  *       
  *         // 2. display message
  *         echo “Nothing found…<hr />”;
  * }
  *
  * // print a message if the network was succesfully trained
  * if ($success) {
  *         $epochs = $n->getEpoch();
  *         echo “Success in $epochs training rounds!<hr />”;
  * }
  *
  * // in any case, we print the output of the neural network
  * for ($i = 0; $i < count($n->trainInputs); $i ++) {
  *         $output = $n->calculate($n->trainInputs[$i]);
  *         print “<br />Testset $i; “;
  *         print “expected output = (“.implode(“, “, $n->trainOutput[$i]).”) “;
  *         print “output from neural network = (“.implode(“, “, $output).”)n”;
  * }
  * </code>
  *
  * The resulting output could for example be something along the following lines:
  *
  * <code>
  * Success in 719 training rounds!
  * Testset 0; expected output = (-1) output from neural network = (-0.986415991978)
  * Testset 1; expected output = (1) output from neural network = (0.992121412998)
  * Testset 2; expected output = (1) output from neural network = (0.992469534962)
  * Testset 3; expected output = (-1) output from neural network = (-0.990224120384)
  * </code>
  *
  * …which indicates the network has learned the task.
  * 
  * @author ir. E. Akerboom
  * @author {@link http://www.tremani.nl/ Tremani}, {@link http://maps.google.com/maps?f=q&hl=en&q=delft%2C+the+netherlands&ie=UTF8&t=k&om=1&ll=53.014783%2C4.921875&spn=36.882665%2C110.566406&z=4 Delft}, The Netherlands
  * @since feb 2007
  * @version 1.0
  * @license http://opensource.org/licenses/bsd-license.php BSD License
  */

class NeuralNetwork {

    /**#@+
      * @access private
      */
     var $nodecount = array ();
     var $nodevalue = array ();
     var $nodethreshold = array ();
     var $edgeweight = array ();
     var $learningrate = array (0.1);
     var $layercount = 0;
     var $previous_weightcorrection = array ();
     var $momentum = 0.8;
     var $is_verbose = true;

    var $trainInputs = array ();
     var $trainOutput = array ();
     var $trainDataID = array ();

    var $controlInputs = array ();
     var $controlOutput = array ();
     var $controlDataID = array ();

    var $weightsInitialized = false;

    var $epoch;
     var $error_trainingset;
     var $error_controlset;
     var $success;
     /**#@-*/

    /**
      * Creates a neural network.
      *
      * Example:
      * <code>
      * // create a network with 4 input nodes, 10 hidden nodes, and 4 output nodes
      * $n = new NeuralNetwork(4, 10, 4);
      *
      * // create a network with 4 input nodes, 1 hidden layer with 10 nodes,
      * // another hidden layer with 10 nodes, and 4 output nodes
      * $n = new NeuralNetwork(4, 10, 10, 4);
      *
      * // alternative syntax
      * $n = new NeuralNetwork(array(4, 10, 10, 4));
      * </code>
      *
      * @param array $nodecount The number of nodes in the consecutive layers.
      */
     function NeuralNetwork($nodecount) {
         if (!is_array($nodecount)) {
             $nodecount = func_get_args();
         }
         $this->nodecount = $nodecount;

        // store the number of layers
         $this->layercount = count($this->nodecount);
     }

    /**
      * Sets the learning rate between the different layers.
      *
      * @param array $learningrate An array containing the learning rates [range 0.0 – 1.0].
      * The size of this array is ‘layercount – 1′. You might also provide a single number. If that is
      * the case, then this will be the learning rate for the whole network.
      */
     function setLearningRate($learningrate) {
         if (!is_array($learningrate)) {
             $learningrate = func_get_args();
         }

        $this->learningrate = $learningrate;
     }

    /**
      * Gets the learning rate for a specific layer
      *
      * @param int $layer The layer to obtain the learning rate for
      * @return float The learning rate for that layer
      */
     function getLearningRate($layer) {
         if (array_key_exists($layer, $this->learningrate)) {
             return $this->learningrate[$layer];
         }
         return $this->learningrate[0];
     }

    /**
      * Sets the ‘momentum’ for the learning algorithm. The momentum should
      * accelerate the learning process and help avoid local minima.
      *
      * @param float $momentum The momentum. Must be between 0.0 and 1.0; Usually between 0.5 and 0.9
      */
     function setMomentum($momentum) {
         $this->momentum = $momentum;
     }

    /**
      * Gets the momentum.
      *
      * @return float The momentum
      */
     function getMomentum() {
         return $this->momentum;
     }

    /**
      * Calculate the output of the neural network for a given input vector
      *
      * @param array $input The vector to calculate
      * @return mixed The output of the network
      */
     function calculate($input) {

        // put the input vector on the input nodes
         foreach ($input as $index => $value) {
             $this->nodevalue[0][$index] = $value;
         }

        // iterate the hidden layers
         for ($layer = 1; $layer < $this->layercount; $layer ++) {

            $prev_layer = $layer -1;

            // iterate each node in this layer
             for ($node = 0; $node < ($this->nodecount[$layer]); $node ++) {
                 $node_value = 0.0;

                // each node in the previous layer has a connection to this node
                 // on basis of this, calculate this node’s value
                 for ($prev_node = 0; $prev_node < ($this->nodecount[$prev_layer]); $prev_node ++) {
                     $inputnode_value = $this->nodevalue[$prev_layer][$prev_node];
                     $edge_weight = $this->edgeweight[$prev_layer][$prev_node][$node];

                    $node_value = $node_value + ($inputnode_value * $edge_weight);
                 }

                // apply the threshold
                 $node_value = $node_value – $this->nodethreshold[$layer][$node];

                // apply the activation function
                 $node_value = $this->activation($node_value);

                // remember the outcome
                 $this->nodevalue[$layer][$node] = $node_value;
             }
         }

        // return the values of the last layer (the output layer)
         return $this->nodevalue[$this->layercount – 1];
     }

    /**
      * Implements the standard (default) activation function for backpropagation networks,
      * the ‘tanh’ activation function.
      *
      * @param float $value The preliminary output to apply this function to
      * @return float The final output of the node
      */
     function activation($value) {
         return tanh($value);
         // return (1.0 / (1.0 + exp(- $value)));
     }

    /**
      * Implements the derivative of the activation function. By default, this is the
      * inverse of the ‘tanh’ activation function: 1.0 – tanh($value)*tanh($value);
      *
      * @param float $value ‘X’
      * @return $float
      */
     function derivative_activation($value) {
         $tanh = tanh($value);
         return 1.0 – $tanh * $tanh;
         //return $value * (1.0 – $value);
     }

    /**
      * Add a test vector and its output
      *
      * @param array $input An input vector
      * @param array $output The corresponding output
      * @param int $id (optional) An identifier for this piece of data
      */
     function addTestData($input, $output, $id = null) {
         $index = count($this->trainInputs);
         foreach ($input as $node => $value) {
             $this->trainInputs[$index][$node] = $value;
         }

        foreach ($output as $node => $value) {
             $this->trainOutput[$index][$node] = $value;
         }

        $this->trainDataID[$index] = $id;
     }

    /**
      * Returns the identifiers of the data used to train the network (if available)
      *
      * @return array An array of identifiers
      */
     function getTestDataIDs() {
         return $this->trainDataID;
     }

    /**
      * Add a set of control data to the network.
      *
      * This set of data is used to prevent ‘overlearning’ of the network. The
      * network will stop training if the results obtained for the control data
      * are worsening.
      *
      * The data added as control data is not used for training.
      *
      * @param array $input An input vector
      * @param array $output The corresponding output
     * @param int $id (optional) An identifier for this piece of data
      */
     function addControlData($input, $output, $id = null) {
         $index = count($this->controlInputs);
         foreach ($input as $node => $value) {
             $this->controlInputs[$index][$node] = $value;
         }

        foreach ($output as $node => $value) {
             $this->controlOutput[$index][$node] = $value;
         }

        $this->controlDataID[$index] = $id;
     }

    /**
      * Returns the identifiers of the control data used during the training
      * of the network (if available)
      *
      * @return array An array of identifiers
      */
     function getControlDataIDs() {
         return $this->controlDataID;
     }

    /**
      * Shows the current weights and thresholds
      *
      * @param boolean $force Force the output, even if the network is {@link setVerbose() not verbose}.
      */
     function showWeights($force = false) {
         if ($this->isVerbose() || $force) {
             echo “<hr>”;
             echo “<br />Weights: <pre>”.serialize($this->edgeweight).”</pre>”;
             echo “<br />Thresholds: <pre>”.serialize($this->nodethreshold).”</pre>”;
         }
     }

    /**
      * Determines if the neural network displays status and error messages. By default, it does.
      *
      * @param boolean $is_verbose ‘true’ if you want to display status and error messages, ‘false’ if you don’t
      */
     function setVerbose($is_verbose) {
         $this->is_verbose = $is_verbose;
     }

    /**
      * Returns whether or not the network displays status and error messages.
      *
      * @return boolean ‘true’ if status and error messages are displayed, ‘false’ otherwise
      */
     function isVerbose() {
         return $this->is_verbose;
     }

    /**
      * Loads a neural network from a file saved by the ‘save()’ function. Clears
      * the training and control data added so far.
      *
      * @param string $filename The filename to load the network from
      * @return boolean ‘true’ on success, ‘false’ otherwise
      */
     function load($filename) {
         if (file_exists($filename)) {
             $data = parse_ini_file($filename);
             if (array_key_exists(“edges”, $data) && array_key_exists(“thresholds”, $data)) {
                 // make sure all standard preparations performed
                 $this->initWeights();

                // load data from file
                 $this->edgeweight = unserialize($data[‘edges’]);
                 $this->nodethreshold = unserialize($data[‘thresholds’]);

                $this->weightsInitialized = true;

                // load IDs of training and control set
                 if (array_key_exists(“training_data”, $data) && array_key_exists(“control_data”, $data)) {

                    // load the IDs
                     $this->trainDataID = unserialize($data[‘training_data’]);
                     $this->controlDataID = unserialize($data[‘control_data’]);

                    // if we do not reset the training and control data here, then we end up
                     // with a bunch of IDs that do not refer to the actual data we’re training
                     // the network with.
                     $this->controlInputs = array ();
                     $this->controlOutput = array ();

                    $this->trainInputs = array ();
                     $this->trainOutput = array ();
                 }

                return true;
             }
         }

 

        return false;
     }

    /**
      * Saves a neural network to a file
      *
      * @param string $filename The filename to save the neural network to
      * @return boolean ‘true’ on success, ‘false’ otherwise
      */
     function save($filename) {
         $f = fopen($filename, “w”);
         if ($f) {
             fwrite($f, “[weights]”);
             fwrite($f, “rnedges = “”.serialize($this->edgeweight).”””);
             fwrite($f, “rnthresholds = “”.serialize($this->nodethreshold).”””);
             fwrite($f, “rn”);
             fwrite($f, “[identifiers]”);
             fwrite($f, “rntraining_data = “”.serialize($this->trainDataID).”””);
             fwrite($f, “rncontrol_data = “”.serialize($this->controlDataID).”””);
             fclose($f);

            return true;
         }

        return false;
     }

    /**
      * Start the training process
      *
      * @param int $maxEpochs The maximum number of epochs
      * @param float $maxError The maximum squared error in the training data
      * @return bool ‘true’ if the training was successful, ‘false’ otherwise
      */
     function train($maxEpochs = 500, $maxError = 0.01) {

        if (!$this->weightsInitialized) {
             $this->initWeights();
         }

        if ($this->isVerbose()) {
             echo “<table>”;
             echo “<tr><th>#</th><th>error(trainingdata)</th><th>error(controldata)</th><th>slope(error(controldata))</th></tr>”;
         }

        $epoch = 0;
         $errorControlSet = array ();
         $avgErrorControlSet = array ();
         define(‘SAMPLE_COUNT’, 10);
         do {
//                        echo “<tr><td colspan=10><b>epoch $epoch</b></td></tr>”;
             for ($i = 0; $i < count($this->trainInputs); $i ++) {
                 // select a training pattern at random
                 $index = mt_rand(0, count($this->trainInputs) – 1);

                // determine the input, and the desired output
                 $input = $this->trainInputs[$index];
                 $desired_output = $this->trainOutput[$index];

                // calculate the actual output
                 $output = $this->calculate($input);

//                              echo “<tr><td></td><td>Training set $i</td><td>input = (” . implode(“, “, $input) . “)</td>”;
//                 echo “<td>desired = (” . implode(“, “, $desired_output) . “)</td>”;
//                echo “<td>output = (” . implode(“, “, $output) .”)</td></tr>”;

                // change network weights
                 $this->backpropagate($output, $desired_output);
             }

            // buy some time
             set_time_limit(300);

            //display the overall network error after each epoch
             $squaredError = $this->squaredErrorEpoch();
             if ($epoch % 2 == 0) {
                 $squaredErrorControlSet = $this->squaredErrorControlSet();
                 $errorControlSet[] = $squaredErrorControlSet;

                if (count($errorControlSet) > SAMPLE_COUNT) {
                     $avgErrorControlSet[] = array_sum(array_slice($errorControlSet, -SAMPLE_COUNT)) / SAMPLE_COUNT;
                 }

                list ($slope, $offset) = $this->fitLine($avgErrorControlSet);
                 $controlset_msg = $squaredErrorControlSet;
             } else {
                 $controlset_msg = “”;
             }

            if ($this->isVerbose()) {
                 echo “<tr><td><b>$epoch</b></td><td>$squaredError</td><td>$controlset_msg”;
                 echo “<script type=’text/javascript’>window.scrollBy(0,100);</script>”;
                 echo “</td><td>$slope</td></tr>”;
                 echo “</td></tr>”;

                flush();
                 ob_flush();
             }

            // conditions for a ‘successful’ stop:
             // 1. the squared error is now lower than the provided maximum error
             $stop_1 = $squaredError <= $maxError || $squaredErrorControlSet <= $maxError;

            // conditions for an ‘unsuccessful’ stop
             // 1. the maximum number of epochs has been reached
             $stop_2 = $epoch ++ > $maxEpochs;

            // 2. the network’s performance on the control data is getting worse
             $stop_3 = $slope > 0;

        } while (!$stop_1 && !$stop_2 && !$stop_3);

        $this->setEpoch($epoch);
         $this->setErrorTrainingSet($squaredError);
         $this->setErrorControlSet($squaredErrorControlSet);
         $this->setTrainingSuccessful($stop_1);

        if ($this->isVerbose()) {
             echo “</table>”;
         }

        return $stop_1;
     }

    /**
      * After training, this function is used to store the number of epochs the network
      * needed for training the network. An epoch is defined as the number of times
      * the complete trainingset is used for training.
      *
      * @access private
      * @param int $epoch
      */
     function setEpoch($epoch) {
         $this->epoch = $epoch;
     }

    /**
      * Gets the number of epochs the network needed for training.
      *
      * @access private
      * @return int The number of epochs.
      */
     function getEpoch() {
         return $this->epoch;
     }

    /**
      * After training, this function is used to store the squared error between the
      * desired output and the obtained output of the training data.
      *
      * @access private
      * @param float $error The squared error of the training data
      */
     function setErrorTrainingSet($error) {
         $this->error_trainingset = $error;
     }

    /**
      * Gets the squared error between the desired output and the obtained output of
      * the training data.
      *
      * @access private
      * @return float The squared error of the training data
      */
     function getErrorTrainingSet() {
         return $this->error_trainingset;
     }

    /**
      * After training, this function is used to store the squared error between the
      * desired output and the obtained output of the control data.
      *
      * @access private
      * @param float $error The squared error of the control data
      */
     function setErrorControlSet($error) {
         $this->error_controlset = $error;
     }

    /**
      * Gets the squared error between the desired output and the obtained output of
      * the control data.
      *
      * @access private
      * @return float The squared error of the control data
      */
     function getErrorControlSet() {
         return $this->error_controlset;
     }

    /**
      * After training, this function is used to store whether or not the training
      * was successful.
      *
      * @access private
      * @param bool $success ‘true’ if the training was successful, ‘false’ otherwise
      */
     function setTrainingSuccessful($success) {
         $this->success = $success;
     }

    /**
      * Determines if the training was successful.
      *
      * @access private
      * @return bool ‘true’ if the training was successful, ‘false’ otherwise
      */
     function getTrainingSuccessful() {
         return $this->success;
     }

    /**
      * Finds the least square fitting line for the given data.
      *
      * This function is used to determine if the network is overtraining itself. If
      * the line through the controlset’s most recent squared errors is going ‘up’,
      * then it’s time to stop training.
      *
      * @access private
      * @param array $data The points to fit a line to. The keys of this array represent
      *                    the ‘x’-value of the point, the corresponding value is the
      *                    ‘y’-value of the point.
      * @return array An array containing, respectively, the slope and the offset of the fitted line.
      */
     function fitLine($data) {
         // based on
         //    http://mathworld.wolfram.com/LeastSquaresFitting.html

        $n = count($data);

        if ($n > 1) {
             $sum_y = 0;
             $sum_x = 0;
             $sum_x2 = 0;
             $sum_xy = 0;
             foreach ($data as $x => $y) {
                 $sum_x += $x;
                 $sum_y += $y;
                 $sum_x2 += $x * $x;
                 $sum_xy += $x * $y;
             }

            // implementation of formula (12)
             $offset = ($sum_y * $sum_x2 – $sum_x * $sum_xy) / ($n * $sum_x2 – $sum_x * $sum_x);

            // implementation of formula (13)
             $slope = ($n * $sum_xy – $sum_x * $sum_y) / ($n * $sum_x2 – $sum_x * $sum_x);

            return array ($slope, $offset);
         } else {
             return array (0.0, 0.0);
         }
     }

    /**
      * Gets a random weight between [-0.25 .. 0.25]. Used to initialize the network.
      *
      * @return float A random weight
      */
     function getRandomWeight($layer) {
         return ((mt_rand(0, 1000) / 1000) – 0.5) / 2;
     }

    /**
      * Randomise the weights in the neural network
      *
      * @access private
      */
     function initWeights() {
         // assign a random value to each edge between the layers, and randomise each threshold
         //
         // 1. start at layer ‘1’ (so skip the input layer)
         for ($layer = 1; $layer < $this->layercount; $layer ++) {

            $prev_layer = $layer -1;

            // 2. in this layer, walk each node
             for ($node = 0; $node < $this->nodecount[$layer]; $node ++) {

                // 3. randomise this node’s threshold
                 $this->nodethreshold[$layer][$node] = $this->getRandomWeight($layer);

                // 4. this node is connected to each node of the previous layer
                 for ($prev_index = 0; $prev_index < $this->nodecount[$prev_layer]; $prev_index ++) {

                    // 5. this is the ‘edge’ that needs to be reset / initialised
                     $this->edgeweight[$prev_layer][$prev_index][$node] = $this->getRandomWeight($prev_layer);

                    // 6. initialize the ‘previous weightcorrection’ at 0.0
                     $this->previous_weightcorrection[$prev_layer][$prev_index] = 0.0;
                 }
             }
         }
     }

    /**
     * Performs the backpropagation algorithm. This changes the weights and thresholds of the network.
     *
     * @access private
     * @param array $output The output obtained by the network
     * @param array $desired_output The desired output
     */
     function backpropagate($output, $desired_output) {

        $errorgradient = array ();
         $outputlayer = $this->layercount – 1;

        $momentum = $this->getMomentum();

        // Propagate the difference between output and desired output through the layers.
         for ($layer = $this->layercount – 1; $layer > 0; $layer –) {
             for ($node = 0; $node < $this->nodecount[$layer]; $node ++) {

                // step 1: determine errorgradient
                 if ($layer == $outputlayer) {
                     // for the output layer:
                     // 1a. calculate error between desired output and actual output
                     $error = $desired_output[$node] – $output[$node];

                    // 1b. calculate errorgradient
                     $errorgradient[$layer][$node] = $this->derivative_activation($output[$node]) * $error;
                 } else {
                     // for hidden layers:
                     // 1a. sum the product of edgeweight and errorgradient of the ‘next’ layer
                     $next_layer = $layer +1;

                    $productsum = 0;
                     for ($next_index = 0; $next_index < ($this->nodecount[$next_layer]); $next_index ++) {
                         $_errorgradient = $errorgradient[$next_layer][$next_index];
                         $_edgeweight = $this->edgeweight[$layer][$node][$next_index];

                        $productsum = $productsum + $_errorgradient * $_edgeweight;
                     }

                    // 1b. calculate errorgradient
                     $nodevalue = $this->nodevalue[$layer][$node];
                     $errorgradient[$layer][$node] = $this->derivative_activation($nodevalue) * $productsum;
                 }

                // step 2: use the errorgradient to determine a weight correction for each node
                 $prev_layer = $layer -1;
                 $learning_rate = $this->getLearningRate($prev_layer);

                for ($prev_index = 0; $prev_index < ($this->nodecount[$prev_layer]); $prev_index ++) {

                    // 2a. obtain nodevalue, edgeweight and learning rate
                     $nodevalue = $this->nodevalue[$prev_layer][$prev_index];
                     $edgeweight = $this->edgeweight[$prev_layer][$prev_index][$node];

                    // 2b. calculate weight correction
                     $weight_correction = $learning_rate * $nodevalue * $errorgradient[$layer][$node];

                    // 2c. retrieve previous weight correction
                     $prev_weightcorrection = $this->previous_weightcorrection[$layer][$node];

                    // 2d. combine those (‘momentum learning’) to a new weight
                     $new_weight = $edgeweight + $weight_correction + $momentum * $prev_weightcorrection;

                    // 2e. assign the new weight to this edge
                     $this->edgeweight[$prev_layer][$prev_index][$node] = $new_weight;

                    // 2f. remember this weightcorrection
                     $this->previous_weightcorrection[$layer][$node] = $weight_correction;
                 }

                // step 3: use the errorgradient to determine threshold correction
                 $threshold_correction = $learning_rate * -1 * $errorgradient[$layer][$node];
                 $new_threshold = $this->nodethreshold[$layer][$node] + $threshold_correction;

                $this->nodethreshold[$layer][$node] = $new_threshold;
             }
         }
     }

    /**
      * Calculate the root-mean-squared error of the output, given the
      * trainingdata.
      *
      * @access private
      * @return float The root-mean-squared error of the output
      */
     function squaredErrorEpoch() {
         $RMSerror = 0.0;
         for ($i = 0; $i < count($this->trainInputs); $i ++) {
             $RMSerror += $this->squaredError($this->trainInputs[$i], $this->trainOutput[$i]);
         }
         $RMSerror = $RMSerror / count($this->trainInputs);

        return sqrt($RMSerror);
     }

    /**
      * Calculate the root-mean-squared error of the output, given the
      * controldata.
      *
      * @access private
      * @return float The root-mean-squared error of the output
      */
     function squaredErrorControlSet() {

        if (count($this->controlInputs) == 0) {
             return 1.0;
         }

        $RMSerror = 0.0;
         for ($i = 0; $i < count($this->controlInputs); $i ++) {
             $RMSerror += $this->squaredError($this->controlInputs[$i], $this->controlOutput[$i]);
         }
         $RMSerror = $RMSerror / count($this->controlInputs);

        return sqrt($RMSerror);
     }

    /**
      * Calculate the root-mean-squared error of the output, given the
      * desired output.
      *
      * @access private
      * @param array $input The input to test
      * @param array $desired_output The desired output
      * @return float The root-mean-squared error of the output compared to the desired output
      */
     function squaredError($input, $desired_output) {
         $output = $this->calculate($input);

        $RMSerror = 0.0;
         foreach ($output as $node => $value) {
             //calculate the error
             $error = $output[$node] – $desired_output[$node];

            $RMSerror = $RMSerror + ($error * $error);
         }

        return $RMSerror;
     }
}
?>

日志

DC调光和PWM调光这两种屏幕调光方式的区别

2019-3-25 8:55:22

教程

小米9刷Magisk(面具)详细教程

2019-7-4 12:47:07

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
搜索